PRECALCULUS Pretest

Heart of Algebra - SAT Practice

Name:

Period:

Date:

JUMBER CORRECT:

Graphing

Linear

Solving

Systems of

Linear:

Models

Equations

Equations

Show ALL Work For Credit

GRAPHING LINEAR EQUATIONS

The graph above shows the positions of Paul and Mark during a race. Paul and Mark each ran at a constant rate, and Mark was given a head start to shorten the distance he needed to run. Paul finished the race in 6 seconds, and Mark finished the race in 10 seconds. According to the graph, Mark was given a head start of how many yards?

- A)
- B) 12

Which of the following is the graph of the equation $y \neq 2x$ xy-plane?

A)

+ Slope B)

The line with the equation $\frac{4}{5}x + \frac{1}{3}y = 1$ is graphed

in the xy-plane. What is the x-coordinate of the

Theors y=0, plug y=0 into equation $\frac{4}{5}x+\frac{1}{3}(0)=1$ $x=\frac{5}{4}$ $x=1.\frac{5}{4}$

A website-hosting service charges businesses a onetime setup fee of \$350 plus d dollars for each month. If a business owner paid \$1,010 for the first 12 months, including the setup fee, what is the value of d?

- A) 25
- B) 35

7=mx+12 aretime 1010=dx+350 1010=a(12)+350

CREATING LINEAR MODELS

2

If y = kx, where k is a constant, and y = 24 when x = 6, what is the value of y when x = 5?

A) 6 Find K first

$$Y = K \times_{1} Y = 24$$
, $X = 6$
 $24 = K \cdot 6$
 $4 = K$
• If $K = U$ and $X = 5$
 $X = 4 \cdot 5$

6

$$h = 3a + 28.6$$

A pediatrician uses the model above to estimate the height h of a boy, in inches, in terms of the boy's age a, in years, between the ages of 2 and 5. Based on the model, what is the estimated increase, in inches, of a boy's height each year?

35

$$a = 18t + 15$$

Jane made an initial deposit to a savings account. Each week thereafter she deposited a fixed amount to the account. The equation above models the amount a, in dollars, that Jane has deposited after t weekly deposits. According to the model, how many dollars was Jane's initial deposit? (Disregard the \$ sign when gridding your answer.)

Questions 9 and 10 refer to the following information.

The speed of a sound wave in air depends on the air temperature. The formula above shows the relationship between a, the speed of a sound wave, in feet per second, and t, the air temperature, in degrees Fahrenheit (°F).

9

Which of the following expresses the air temperature in terms of the speed of a sound wave?

A)
$$t = \frac{a - 1,052}{1.08}$$

B) $t = \frac{a + 1,052}{1.08}$

C) $t = \frac{1,052 - a}{1.08}$

D) $t = \frac{1.08}{a + 1,052}$

70

At which of the following air temperatures will the speed of a sound wave be closest to 1,000 feet per second?

second?
A)
$$-46^{\circ}F$$

B) $-48^{\circ}F$
C) $-49^{\circ}F$
D) $-50^{\circ}F$
 $1000 = 1052 + 1.08 t$
 $-52 = 1.08 t$

SOLVING EQUATIONS

If
$$\frac{x-1}{3} = k$$
 and $k = 3$, what is the value of x ?

$$(3)(\frac{X-1}{3})=3.3$$

If
$$\frac{a}{b} = 2$$
, what is the value of $\frac{4b}{a}$?

$$\frac{C)^2}{D}$$

If
$$16 + 4x$$
 is 10 more than 14) what is the value of $8x$?

A) 2

Substitute into 8 X

$$R = \frac{F}{N + F}$$

A website uses the formula above to calculate a seller's rating, R, based on the number of favorable reviews, F, and unfavorable reviews, N. Which of the following expresses the number of favorable reviews in terms of the other variables?

A)
$$F = \frac{RN}{R-1}$$

A)
$$F = \frac{RN}{R+1}$$
 (A+F) $R = \frac{F}{A+F}$

$$(B) F = \frac{RN}{1 - R}$$

C)
$$F = \frac{N}{1-R}$$

B)
$$F = \frac{RN}{1-R}$$

C) $F = \frac{N}{1-R}$ $N+F$ $R = F$
D) $F = \frac{N}{R-1}$ $NR = F-F$

D)
$$F = \frac{N}{R-1}$$

NR = F(1-R)

CVOSSOFF

cross off CHERTS WHY 00% 1-R

SYSTEMS OF LINEAR EQUAT

$$3x + 4y = -23$$
$$2y - x = -19$$

What is the solution (x, y) to the system of equations above?

A)
$$(-5,-2)$$
 $3x + 4y = -23$ (1)

C)
$$(4,-6)$$
 $-3x + 6y = -57$ (2)

$$(1) + (2) =)$$
 $10y = -80$
 $y = -8$

A group of friends decided to divide the \$800 cost of a trip equally among themselves. When two of the friends decided not to go on the trip, those remaining still divided the \$800 cost equally, but each friend's share of the cost increased by \$20. How many friends were in the group originally?

n: number of friends

C: cost per person

$$\frac{800}{n-2} = c+20$$
 equation

$$\frac{v-5}{800} = \frac{v}{800} + 50$$

$$800n = 800(n-2) + 20(n-2)n$$

 $800n = 800n - 1600 + 20n^2 - 40n$

$$n = 10$$
 =) $(n = 10)$

$$b = 2.35 + 0.25x$$
$$c = 1.75 + 0.40x$$

In the equations above, b and c represent the price per pound, in dollars, of beef and chicken, respectively, x weeks after July 1 during last summer. What was the price per pound of beef when it was equal to the price per pound of chicken?

A) \$2.60

where

B) \$2.85 C) \$2.95

0.6 = 0.15x

AND THE REPORT OF THE PERSON O

4 = x

A food truck sells salads for \$6.50 each and drinks for \$2.00 each. The food truck's revenue from selling a total of 209 salads and drinks in one day was \$836.50. How many salads were sold that day?

99

$$(s + d = 209).2$$

(2)

$$(1)$$
 - (2) => 6.58 - 28 = 418.5