\qquad
Block__ Date
\qquad

1. The equation $y=\left\{\begin{array}{ll}x+2 & x<-1 \\ x^{2} & x \geq-1\end{array}\right.$ makes one graph from two pieces - it's called a piecewise function.

For $x<-1 \quad(x$-values less than -1$)$, we use the equation $x+2$. For $x \geq-1$ (x-values greater than -1 , and including -1), we use the equation x^{2}.

Complete the tables of values and draw the graph of y.

x	$y=x+2$	$y=x^{2}$
-3		
-2		
-1		
0		
1		
2		
3		
4		

Since this is an end point for each interval, you must check if these points have OPEN or CLOSED circles

2. Make a table and graph for the equation $g(x)=\left\{\begin{array}{ll}2 x+2 & x<1 \\ x^{2}+3 & x \geq 1\end{array}\right.$.

For $x<1$ (x-values less than 1), we use the equation $2 x+2$. For $x \geq 1$ (x-values greater than 1 , and including 1), we use the equation $x^{2}+3$.

x	$y=2 x+2$	$y=x^{2}+3$
-3		
-2		
-1		
0		
1		
2		
3		
4		

3. a. Write the piecewise function for the graph shown.
b. Name the domain and range.

