BM 3: I CAN DETERMINE END BEHAVIOR OF A FUNCTION FROM ITS GRAPH

Khan Academy video: End Behavior of Polynomials
 (link posted at usamath.weebly.com)

Consider the quadratic function $y=a x^{2}+b x+c$.
When $a>0$, the parabola opens \qquad When $a<0$, the parabola opens \qquad and the graph looks like and the graph looks like

Consider the cubic function $y=a x^{3}+b x^{2}+c x+d$.
When $a>0$ and x is really negative, the whole thing is \qquad . But as x gets more and more positive, it gets more \qquad . So when $a>0$, the graph looks like:

Consider the cubic function $y=a x^{3}+b x^{2}+c x+d$.
When $a<0$ and x is really negative, you multiply that by a negative and you get a
\qquad value, the whole thing is \qquad . So when $a<0$, the graph
looks like:
End Behavior describes what
happens at
of x.

Consider the $4^{\text {th }}$ degree polynomial (quartic) $y=a x^{4}+b x^{3}+c x^{2}+d x+f$.
When $a>0$, the graph looks like
When $a<0$, the graph looks like

Consider the $5^{\text {th }}$ degree polynomial (quintic) $y=a x^{5}+b x^{4}+\ldots$
When $a>0$, the graph looks like When $a<0$, the graph looks like

Khan Academy notes: End Behavior of Polynomials
(link posted at usamath.weebly.com)
The END BEHAVIOR of a function f describes:

Consider the graph to the right.
As x gets larger and larger, $f(x)$ gets larger and larger as well.

- Mathematically, we write as $x \rightarrow \quad, f(x) \rightarrow$
- Verbally, we say \qquad
\qquad
\qquad

On the other end, as we move to the left along the x-axis, the graph of f goes down. This means as x gets more negative, $f(x)$ also gets more negative.

- Mathematically, we write as $x \rightarrow \quad, f(x) \rightarrow$
- Verbally, we say \qquad
\qquad
\qquad

Here is the graph of $g(x)$. Use symbols and words to describe the end behavior.

