BM 3: I CAN DETERMINE END BEHAVIOR OF A FUNCTION FROM ITS GRAPH

Khan Academy video: End Behavior of Polynomials (link posted at usamath.weebly.com)

Consider the quadratic function $y = ax^2 + bx + c$.

When a > 0, the parabola opens _____When a < 0, the parabola opens _____and the graph looks likeand the graph looks like

Consider the cubic function $y = ax^3 + bx^2 + cx + d$.

When a > 0 and x is really negative, the whole thing is ______. But as x gets more and more positive, it gets more ______. So when a > 0, the graph looks like:

Consider the cubic function $y = ax^3 + bx^2 + cx + d$.

When a < 0 and x is really negative, you multiply that by a negative and you get a ______value, the whole thing is ______. So when a < 0, the graph looks like:

End Behavior describes what happens at $\overline{\int_{0}^{0} f(x) dx}$

Consider the 4th degree polynomial (quartic) $y = ax^4 + bx^3 + cx^2 + dx + f$. When a > 0, the graph looks like When a < 0, the graph looks like Consider the 5th degree polynomial (quintic) $y = ax^5 + bx^4 + ...$

When a > 0, the graph looks like

When a < 0, the graph looks like

Khan Academy notes: End Behavior of Polynomials (link posted at usamath.weebly.com)

The END BEHAVIOR of a function *f* describes:

On the other end, as we move to the left along the x-axis, the graph of f goes down. This means as x gets more negative, f(x) also gets more negative.

- Mathematically, we write as $x \rightarrow (f(x)) \rightarrow (f(x))$
- Verbally, we say ______

Here is the graph of g(x). Use symbols and words to describe the end behavior.