ESSENTIAL BMI: I CAN EVALUATE, GRAPH. AND WRITE PIECEWISE FUNCTIONS

Math 2 textbook, pages 301-304. START: Just below "For You To Do"
Previously, you looked at a number of functions that were defined recursively. Consider $f(n)$ below, for the whole number values of n.

The graph of any function with a recursive definition will simply be a set of discrete points. In this case, since the natural domain of the function is \mathbb{Z}^{+}, the x-coordinate of each point will be a whole number. ($\mathbb{Z}^{+} \ldots>$ this symbol means the set of positive integers)

Compare the definitions of the functions below.

$$
f(n)=\left\{\begin{array}{cc}
3 & \text { if } n=0 \\
f(n-1)+5 & \text { if } n>0
\end{array} \quad g(x)=\left\{\begin{array}{cc}
3 & \text { if } x<0 \\
5 x+3 & \text { if } x \geq 0
\end{array}\right.\right.
$$

The definition of g is not recursive. The function g is Here is the graph of g. called a \qquad It is defined in \qquad .The domain of g is the union of each \qquad in the definition, which is this case is \qquad _.

Problem Sketch the graph of the function k shown below.

For Discussion

 From page 3033. What are the domain and range of k ?

For You to Do

 From top of page 3044. Sketch a graph of each of the following functions. Indicate whether the function is one-to-one.
a. $\quad f(x)=\left\{\begin{array}{cc}3 & \text { if } x \leq-1 \\ -2 & \text { if } x>-1\end{array}\right.$
b. $\quad g(x)= \begin{cases}2 x-4 & \text { if } x<0 \\ 2 x+4 & \text { if } x \geq 0\end{cases}$

