ESSENTIAL BM I: I CAN EVALUATE, GRAPH, AND WRITE PIECEWISE FUNCTIONS

Math 2 textbook, pages 301 – 304. STORT: Just below "For You To Do"

Previously, you looked at a number of functions that were defined recursively. Consider f(n) below, for the whole number values of n.

The graph of any function with a recursive definition will simply be a set of discrete points. In this case, since the natural domain of the function is \mathbb{Z}^+ , the *x*-coordinate of each point will be a whole number. (\mathbb{Z}^+ ---> this symbol means the set of positive integers)

Compare the definitions of the functions below.

 $f(n) = \begin{cases} 3 & \text{if } n = 0\\ f(n-1) + 5 & \text{if } n > 0 \end{cases} \qquad g(x) = \begin{cases} 3 & \text{if } x < 0\\ 5x + 3 & \text{if } x \ge 0 \end{cases}$

The definition of g is not recursive. The function g is

Here is the graph of g.

called a ______. It is defined in ______. The domain of *g* is the union of each ______ in the definition, which is this case is ______.

Problem Sketch the graph of the function k shown below.

From bottom of page 302

For Discussion From page 303

3. What are the domain and range of k?

For You to Do From top of page 304

4. Sketch a graph of each of the following functions. Indicate whether the function is one-to-one.

EXAMPLE 2