Check Your Understanding

1. Use the polynomial $3+4 x^{2}-5 x+\frac{3}{4} x^{5}-17 x^{2}+x^{4}$.
a. Write the polynomial in normal form.
b. What is the degree of the polynomial?
c. What is the coefficient of x ?
d. What is the coefficient of x^{2} ?
e. What is the coefficient of x^{3} ?
f. Find a polynomial that when added to this one gives a sum of degree 3.
2. Describe how each polynomial identity is related to the corresponding number fact.
a. $(x+5)+\left(x^{2}+2 x+4\right)=x^{2}+3 x+9$ $15+124=139$
b. $(x+1)\left(x^{2}+2 x+4\right)=x^{3}+3 x^{2}+6 x+4$
$11 \cdot 124=1364$
c. $(x+1)^{2}=x^{2}+2 x+1$
$11^{2}=121$
d. $(x+1)^{3}=x^{3}+3 x^{2}+3 x+1$
$11^{3}=1331$
3. a. What is the prime factorization of 120 ? Of 168 ?
b. How can you use the prime factorizations to find the greatest common factor of 120 and 168 ?
c. What is the greatest common factor of $273,375=3^{7} \cdot 5^{3}$ and $140,625=3^{2} \cdot 5^{6} ?$
d. Suppose x and y are prime numbers. What is the greatest common factor of $x^{7} y^{3}$ and $x^{2} y^{6} ?$
e. What is the greatest common factor of $120 x^{7} y^{3}$ and $168 x^{2} y^{6}$?

How do you find the greatest common factor for monomials?
4. Transform the expression below into normal form. For what values of a is the coefficient of x equal to 0 ?

$$
\left(x^{2}+3 x+a\right)\left(x^{2}+3 x-7\right)
$$

For Exercises 5-10, complete each of the following.

- Calculate three numeric examples that follow from each identity by substituting a number for each variable.
- Prove each identity is true. Use the basic rules of algebra.

5. $x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)$
6. $x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$
7. $x^{6}-1=\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$
8. $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$
9. $(s+t)^{2}-(s-t)^{2}=4 s t$
10. $(n+1)^{2}-n^{2}=2 n+1$
11. Take It Further Show that this equation is an identity.

$$
\left(x^{3}-1\right)\left(x^{3}+1\right)=\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)
$$

On Your Own

12. Use the identity below. Calculate three numeric examples that follow by substituting for x. Then prove that the identity is true, using the basic rules of algebra.

$$
\left(x^{2}-x\right)(x+1)=\left(x^{2}+x\right)(x-1)
$$

13. Here are five equations of polynomials. All the expressions are in normal form. A few of the terms are hidden in each expression.

Three of these cannot be identities. Which three are they? Explain.
A. $3 x^{3}+\square+2 x+1 \stackrel{?}{=} \square+2 x+4$
B. $\square+x^{2}-9 \stackrel{?}{=} x^{3}+\square-9$
C. $\square+3 x^{2}+\square+6 \stackrel{?}{=} x^{3}+3 x^{2}+$
D. $x^{7}+7 x+\square \stackrel{?}{\underline{=}} 3 x^{7}+\square+11$
E. $x^{2}+\square+4 \stackrel{?}{=} \square+x^{2}+$
14. Show that each equation is an identity.
a. $m^{2}-n^{2}=m(m-n)+n(m-n)$
b. $m(m-n)+n(m-n)=(m+n)(m-n)$
c. $(m+1)(m-n)+(n-1)(m-n)=(m+n)(m-n)$
15. Standardized Test Prep Which polynomial is NOT equivalent to the other three polynomials?
A. $\left(3 x^{3}+3 x^{2}+6 x-1\right)-7\left(x^{2}-1\right)$
B. $\left(x^{2}+2\right)(3 x-4)$
C. $\left(4 x^{3}-4 x^{2}+6 x-9\right)-\left(x^{3}-1\right)$
D. $(x-1)\left(3 x^{2}+5\right)+\left(-x^{2}+x-3\right)$
16. What is the coefficient of the given term in the normal form of $\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{2} ?$
a. x^{8}
b. x^{10}

What is the coefficient of the given term in the normal form of $\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{3} ?$
c. x^{10}
d. x^{20}

Maintain Your Skills

17. Find the normal form of each polynomial.
a. $\left(1+x+x^{2}\right)\left(1+x^{3}\right)$
b. $\left(1+x+x^{2}+x^{3}\right)\left(1+x^{4}\right)$
c. $\left(1+x+x^{2}+x^{3}+x^{4}\right)\left(1+x^{5}\right)$
d. Describe a pattern.
18. Expand each power. Replace x with 1 . What is your result?
a. $(x-1)^{2}$
b. $(x-1)^{3}$
c. $(x-1)^{4}$
d. Describe a pattern. Explain why this pattern exists.
19. Write each polynomial in normal form. What is the degree?
a. $x(x+1)$
b. $x(x+1)(x+2)$
c. $x(x+1)(x+2)(x+3)$
d. $x(x+1)(x+2)(x+3)(x+4)$
e. Describe a pattern. Explain why this pattern exists.
20. Write each polynomial in normal form. What is the sum of the coefficients of each polynomial?
a. $x(x+1)$
b. $x(x+1)(x+2)$
c. $x(x+1)(x+2)(x+3)$
d. $x(x+1)(x+2)(x+3)(x+4)$
e. Describe a pattern.

Go enline
 Video Tutor
 www.successnetplus.com

