9. Suppose the sides of a triangle have lengths a, b, and c. A famous formula, proved by Heron of Alexandria in about A.D. 60, states that you can calculate the area of the triangle by this rule.

$$
A=\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}
$$

a. Find the area of a triangle with side lengths 13,14 , and 15 .
b. Take It Further Expand this product.

$$
(a+b+c)(a+b-c)(c+a-b)(c-a+b)
$$

c. Use Heron's formula to derive a formula for the area of a triangle with sides all the same length.
d. What's Wrong Here? What does the formula give for the area of a triangle with side lengths 6, 4, and 10? Explain.
10. Take It Further Many geometry books state Heron's formula as follows.

$$
A=\sqrt{s(s-a)(s-b)(s-c)}, \text { where } s=\frac{1}{2}(a+b+c)
$$

Show that this expression is equivalent to the expression in Exercise 9.

On Your Own

11. Without expanding, what is the coefficient of x^{4} in the normal form of $\left(x^{2}+3 x^{2}+1\right)\left(2 x^{4}-x^{3}+5 x+2\right)+\left(2 x^{4}-x^{3}+5 x+2\right) ?$
12. The coefficient of x^{3} in the normal form of the polynomial below is 18 .

$$
\left(x^{2}+3 x^{2}+1\right)\left(2 x^{4}-x^{3}+5 x+2\right)+\left(2 x^{4}-x^{3}+5 x+2\right)
$$

What is the coefficient of x^{3} in the normal form of $\left(x^{2}+3 x^{2}+1\right)\left(2 x^{4}-x^{3}+5 x+2\right)-\left(2 x^{4}-x^{3}+5 x+2\right) ?$
13. What is the coefficient of x^{5} in the normal form of $(x+1)^{5}$?
14. Write About It Revisit what you explored in Lesson 2.05.
a. Explain why the coefficient of x^{8} in the normal form of this polynomial is 5 .

$$
\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{2}
$$

b. Explain why the coefficient of x^{10} in the normal form of $\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{2}$ is the number of ways you can roll a sum of 10 if you throw two number cubes.
c. Explain why the coefficient of x^{14} in the normal form of $\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{3}$ is the number of ways you can roll a sum of 14 if you throw three number cubes.

Heron invented the first vending machine. Can you see how inserting a coin would cause the machine to dispense a small amount of water?

