Arithmetic and Geometric Sequences Recursive and Explicit Formulas Day 2

Notation: t_1 = first term in the sequence t_n = the nth term t_{n-1} = the term BEFORE the nth term d = common difference (could be negative) r = common ratio (could be fraction)

Recursive Formula – must know previous term *two formulas: arithmetic and geometric

For an Arithmetic Sequence:	For a Geometric Sequence:
$t_1 = 1^{st}$ term	t ₁ = 1 st term
$\mathbf{t}_{n} = \mathbf{t}_{n-1} + \mathbf{d}$	$\mathbf{t}_{n} = \mathbf{r}(\mathbf{t}_{n-1})$

*Note: When writing the formula, the only thing you fill in is the 1st term and either d or r.

Explicit Formula – based on the term number.

*You are able to find the nth term without knowing the previous term.

For an Arithmetic Sequence:	For a Geometric Sequence:
$t_n = t_1 + d(n - 1)$	$t_n = t_1(r^{n-1})$

*Note: When writing the formula, the only thing you fill in is the t_1 and either the d or r.

Write an explicit and recursive formula for the following sequences (examples from worksheet).

1. -4, -6, -8, -10, ...

Explicit:

Recursive:

2. 19, 13, 7, 1, ...

Explicit:

Recursive:

3. 25, 75, 225, ...

Explicit:

Recursive:

4. 3, 9, 27, 81, ...

Explicit:

Recursive: