Notation:
$\mathrm{t}_{1}=$ first term in the sequence
$\mathrm{t}_{\mathrm{n}}=$ the $\mathrm{n}^{\text {th }}$ term
$\mathrm{t}_{\mathrm{n}-1}=$ the term BEFORE the $\mathrm{n}^{\text {th }}$ term
$\mathrm{d}=$ common difference (could be negative)
$r=$ common ratio (could be fraction)
Recursive Formula - must know previous term
*two formulas: arithmetic and geometric

For an Arithmetic Sequence:
$t_{1}=1^{\text {st }}$ term
$t_{n}=t_{n-1}+d$

For a Geometric Sequence:

$\mathrm{t}_{1}=1^{\text {st }}$ term
$t_{n}=r\left(t_{n-1}\right)$
*Note: When writing the formula, the only thing you fill in is the $1^{\text {st }}$ term and either d or r .

Explicit Formula - based on the term number.
*You are able to find the $\mathrm{n}^{\text {th }}$ term without knowing the previous term.

For an Arithmetic Sequence:
$\mathrm{t}_{\mathrm{n}}=\mathrm{t}_{1}+\mathrm{d}(\mathrm{n}-1)$

For a Geometric Sequence:
$\mathrm{t}_{\mathrm{n}}=\mathrm{t}_{1}\left(\mathrm{r}^{\mathrm{n}-1}\right)$
*Note: When writing the formula, the only thing you fill in is the t_{1} and either the d or r.

Write an explicit and recursive formula for the following sequences (examples from worksheet).

1. $-4,-6,-8,-10, \ldots$

Explicit:

Recursive:

2. $19,13,7,1, \ldots$

Explicit:

Recursive:

3. $25,75,225, \ldots$

Explicit:

Recursive:
4. $3,9,27,81, \ldots$

Explicit:

Recursive:

